HFA1100 Single 5V Supply Application

Authors: Rob Adams, Jeff Lies, Alan Erzinger

Introduction

This application note discusses how to design a video amplifier circuit with gains ≥ 2 in a single 5 V supply application using the HFA1100 video op amp.

Table 1 shows the typical performance data for the HFA1100. The two most important parameters that determine the design configuration are the Common Mode Input Range (CMIR) and the Output Voltage Swing. If either of these two parameters are violated then the rest of the data listed in this table would not necessarily be achieved.

The first circuit to be discussed (see Figure 1), biases the op amp input and output at 2.5 V to take full advantage of the CMIR and the output swing capability of the HFA1100. In order to properly center the input of the op amp, C_{1} is needed to AC couple the input to the amplifier circuit and a resistor divider is formed with R_{2} and R_{3} to bias the input at $2.5 \mathrm{~V} . \mathrm{R}_{2}$ and R_{3} were set to 5 K in order to keep the bias current small (i.e., $\left.I_{B I A S}=5 /\left(R_{2}+R_{3}\right)=0.5 m A\right) . C_{2} A C$ couples the negative input of the op amp such that the DC voltage at the op amp input sees a gain of 1 through the amplifier and the AC voltage sees a gain of $1+R_{5} / R_{4}$ at frequencies well above the roll-off frequency of C_{2}. If C_{2} were not present, then the $D C$ and $A C$ gain would be equal to $1+R_{5} / R_{4}$; therefore, the output and input can't be centered unless the gain equals 1 . As an example, if C_{2} were not present and a gain of 5 were desired then the input bias voltage would have to be 0.5 V in order to center the output at 2.5 V . But this would violate the CMIR of the op amp which would degrade the op amps performance. Since the DC gain is 1 with C_{2} present, this allows a large AC gain as long as the maximum output swing of the amplifier is not exceeded. The roll-off frequency for C_{2} is determined by the equation $f=1 /\left(2^{*} \pi^{*} R_{4}{ }^{*} C\right)$, so for this circuit $f=3 \mathrm{kHz}$. A couple of the drawbacks of this circuit are the offset voltage and low frequency noise contributed by the presence of R_{2} and R_{3}. The output offset contribution from these resistors can be calculated from the equation $V_{\text {OS(OUT) }}=\mathrm{lb}^{*}\left(\mathrm{R}_{2} \| \mathrm{R}_{3}\right)^{*} A_{\text {VDC }}$ where lb is the bias current of the op amp and $A_{V D C}$ is the DC gain.
For the circuit in Figure 1, $A_{V D C}=1, R_{2} \| R_{3}=2.5 \mathrm{k} \Omega$, and lb is $25 \mu \mathrm{~A}$ for the HFA1100 so $\mathrm{V}_{\mathrm{OS}(\mathrm{OUT})}=63 \mathrm{mV}$. The output noise voltage contribution from $\mathrm{R}_{2} \| \mathrm{R}_{3}$ can be calculated from the equation $\mathrm{Ip}^{*}\left(\mathrm{R}_{2} \| \mathrm{R}_{3}\right)^{*} \mathrm{~A}_{\text {VAC }}$ where Ip is the +Input noise current of the op amp. For the circuit shown in Figure 1, the output noise contribution from $\mathrm{R}_{2} \| \mathrm{R}_{3}$ would be 90nV/sqrt(Hz).

To avoid the offset voltage and low frequency noise contributions from R_{2} and R_{3}, the circuit in Figure 2 was developed. The operation of this circuit is essentially the same as Figure 1 except that the 2.5 V bias voltage is supplied from a low output impedance $D C$ supply. R_{1} provides the 50Ω termination and C_{2} provides a good AC ground at the power supply. The major benefit of using this circuit is the fact that R_{1} provides a low impedance to ground which gets rid of the offset voltage and low frequency noise contributions that were seen in the other circuit. Shown in Figures 3 and 4 are the step response and the frequency response for the HFA1100 in the two circuits discussed above.

TABLE 1. HFA1100 SINGLE 5V PERFORMANCE DATA

PARAMETER	TYP
Input Common Mode Range	1 V to 4 V
-3 dB BW $\left(\mathrm{A}_{\mathrm{V}}=+2\right)$	267 MHz
Gain Flatness (to $\left.50 \mathrm{MHz}, \mathrm{A}_{\mathrm{V}}=+2\right)$	0.05 dB
Output Voltage $\left(\mathrm{A}_{\mathrm{V}}=-1\right)$	1.3 V to 3.8 V
Slew Rate $\left(\mathrm{A}_{\mathrm{V}}=+2\right)$	$475 \mathrm{~V} / \mu \mathrm{s}$
0.1% Settling Time	17 ns
Supply Current	5.5 mA

FIGURE 1. HFA1100 WITH $A_{V}=+2$ AND A HIGH SOURCE IMPEDANCE BIAS NETWORK

FIGURE 2. HFA1100 WITH $A_{V}=+2$ AND A LOW SOURCE IMPEDANCE BIAS NETWORK

FIGURE 3. HFA1100 TRANSIENT RESPONSE FOR CIRCUITS IN FIGURES 1 AND 2

FIGURE 4. HFA1100 FREQUENCY RESPONSE FOR CIRCUITS IN FIGURES 1 AND 2

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Sales Office Headquarters

NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204

Melbourne, FL 32902
TEL: (321) 724-7000
FAX: (321) 724-7240

EUROPE

Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05

ASIA

Intersil (Taiwan) Ltd.
Taiwan Limited
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 227169310
FAX: (886) 227153029

